MazeCaster: Pseudo 3D World using Raycasting
Final Report

Tori Hagenlocker
Department of EECS
Massachusetts Institute of Technology
Cambridge, USA
thagenlo@mit.edu

Abstract—This project aims to develop a pseudo-3D world
renderer using ray-casting on an FPGA, simulating a first-person
view within a 2D grid-based environment. Ray-casting calculates
intersections between the player’s viewpoint and walls to render
a 3D perspective, inspired by early 3D game engines. Leveraging
FPGA hardware enables parallel processing of multiple rays,
significantly accelerating rendering, increasing potential frame
rates, and reducing latency compared to software implementa-
tions.

Index Terms—Digital Systems, Field Programmable Gate Ar-
rays, Ray Casting, Digital Differential Analyzer

I. INTRODUCTION

Raycasting, a foundational technique in early 3D gaming
engines is the foundation of pseudo-3D environments. Our
MazeCaster project, makes use of an FPGA to render the
pseudo-3D world. By integrating raycasting with grid-based
map representations, fixed-point arithmetic, frame processing,
MazeCaster offers an efficient and real-time simulation of our
pseudo-3D world.

II. MAP REPRESENTATION

The map is structured as a 2D square grid, each square of
length 1x1, where each cell represents either open space (0)
or a wall (1 - numAuvailableTextures), identified by a positive
value that specifies its color or texture. The map data is stored
in BRAM and the size of this BRAM, dependent on the grid
dimension. The default grid size is 24x24, so the associated
BRAM is 576 entries.

Fig. 1. Raycaster Render

Cathy Hu
Department of EECS
Massachusetts Institute of Technology
Cambridge, USA
cathyhu3 @mit.edu

Heba Hussein
Department of EECS
Massachusetts Institute of Technology
Cambridge, USA
hhussein @mit.edu

III. CONTROLS & RAY CALCULATIONS

The control system is composed of two modules: a button
driver module and movement control module. These modules
work together to enable player movement in our NxN grid map
and are used to determine the player’s position, view direction,
and field of view. Forward, backward, left rotation, and right
rotation inputs are provided via a digital joystick connected to
the FPGA through PMOD inputs.

A. Button Driver

The joystick signals are debounced within the button driver
to ensure clean transitions and reliable pulses for movement
and rotation. The button driver consistently samples the de-
bounced signals every 100 ms, generating single-cycle pulses
for valid joystick movements to be sent to the movement
controller, allowing for continuous movement. A few cycles
later, the updated data is sent back into the button driver,
which only applies changes to the global position and di-
rection vectors when the new_frame signal is received.
The new_frame signal indicates that the previous frame
is done rendering. Synchronizing the new_frame signal
with the movement controller ensures that inputs are properly
accounted for, even while the previous position is rendering,
and applied consistently at the start of each rendering cycle
without disrupting downstream modules.

B. Movement

Forward and backward movement are achieved by scaling
the player’s direction vector, dfr, by a constant speed of 0.1
and adding or subtracting it from the player’s position vector,
POS.

Right and left rotation is controlled using a constant angle
of rotation per frame, 6 = 10°. Based on the input for left or
right rotation, the controller transforms the player’s direction
vector, dir, plane vector, pl(;ne using the rotation matrix:

z'| |cosf —sinf| |z
y' | |sin@ cosf | |y
Collision detection in the movement control module ensures

that the player does not pass through walls while navigating
the grid. Before updating the player’s position, the module

checks that the next intended grid cell is empty by accessing
the NxN grid stored in BRAM.

C. Fixed-Point

The system uses fixed-point arithmetic for calculations. The
default is (8.8 format, which is represented by 1 sign bit, 7
integer bits, and 8 fractional bits. With this representation,
we can represent values ranging from -128 to 127.99609375.
Signed numbers are represented in two’s complement, sim-
plifying arithmetic operations such as addition, subtraction,
and multiplication. This representation allows for efficient
computation of real-time player movement and rotation with-
out the complexity and resource utilization of floating-point
operations.

For the controller, the position, direction, and plane vectors
are (8.8 signed values. To achieve higher precision for
smoother rotations, the rotation matrix trigonometric values
are precomputed constants represented in ()2.14 format, which
allows for 1 sign bit, 1 integer bit, and 14 fractional bits.
Intermediate results are scaled back to ()8.8 representation
for downstream use, balancing precision and balancing preci-
sion and compatibility with later logic. Similar adjustments
are applied throughout the system wherever more accurate
representations are needed.

This fixed-point representations extends to ray initializa-
tion, casting, and processing, where precise calculations are
needed for determining ray directions and wall intersections.
This fixed-point arithmetic also plays a critical role in ray
initialization, casting, and processing, where precise calcu-
lations are needed to determine ray directions and wall in-
tersections. To create a more accurate simulation and better
help our debugging process, a Python implementation of the
ray direction and DDA logic was developed to emulate our
fixed-point arithmetic. Using the Simple Python Fixed Point
Module (SPFPM) package, which supports binary fixed-point
operations, we simulated hardware-like signals for verification
of expected results.

Y wall X wall

lineHeight

Fig. 2. Line Height, X/Y Wall

D. Ray Initializations

To render the scene, for each x-coordinate on the screen, a
ray is cast from the player’s position. As the ray travels across

/ layer
y ¥ wall ray

ray/

——E

Fig. 3. Ray Casting Example, WallX

the grid, it continues until it intersects with a wall cell (either
x or y wall), which is calculated by the DDA.

The ray calculation module operates as a finite state ma-
chine (FSM), sequentially performing: (1) the ray direction
computation. (2) the step and delta distance calculation. (3)
the side distance initialization for the DDA algorithm.

RAY
DIRECTION

T (=)

start,t‘ﬁivx/' start_divy
\

rav,calc,'iuw /read divy

~div_busy
valid_ray_reciprical

dda_data_ready_out

valid_ray_out

Fig. 4. Calculating Ray FSM

The ray’s direction is determined by the player’s direction
dir, camera plane vector plane, and a variable known as
cameraX, which normalizes the hcount within the FOV.

X 2 - hcount 0
cameraX = —— —

screenWidth
ray_Dir = dir + pld’ne * cameraX 2)

Delta distance is the distance the ray must travel in x and
y to move from one grid cell to the next. It is proportional to
the slope of the ray and calculated using:

deltaDist = |%| 3)
rayDir

To calculate the delta distance, deltchist, we had to handle
a division, we incorporated a signed divider module into our
design with a signal flag to indicate when the 8.8 fixed-point
division was complete, ensuring that the module would not
move onto next calculation until the divides with ray directions

in X and Y were complete.

The stepX and stepY values indicate the direction in
which the ray will next move along the x and y axes (either +1
or -1), which is determined by evaluating the sign of rayDirX
and rayDirY.

The corresponding hcount and calculated ray direction, delta
distance, side distance, and step vector are then passed into a
FIFO buffer.

IV. RAY PROCESSING

A. Digital Differential Analyzer (DDA)

The Digital Differential Analyzer (DDA) module is respon-
sible for calculating ray-wall intersection distances and related
hit information, including wall type and precise hit location.
The DDA algorithm incrementally steps along a ray’s path
by precomputed steps (deltaDist) until it detects a wall
intersection using grid map data. This information is used for
perspective and texture rendering, providing wall height and
shading details.

o DDA FIFOs: To handle the variable latency of the DDA
algorithm, the DDA module is buffered with two FIFOs
implemented via AXI stream interfaces: one for input
data and one for output. These FIFOs ensure that preced-
ing and following modules can operate independently at
their own rates. The DDA input FIFO buffers ray data
between the controller/ray calculation modules and the
DDA module. It stores 139-bit wide inputs in a FIFO of
size 144 x 256. The DDA output FIFO collects processed
data from the DDA module into a single 38-bit wide data
line stored in a FIFO of size 40 x 256.

o Grid Map in BRAM: An instance of the grid is stored in
a single-port read-first Block RAM (BRAM) in the top
level, where each cell contains data indicating wall type
or passability. A shared arbiter resolves access conflicts
between DDA FSM submodules, granting BRAM access
alternately as needed.

worldMap[mapX][mapY] == 0
~ &
sideDistX < sideDistY

X_Step
sideDistX += deltaDistX;
mapX += stepX,

side = 0;

/~

/
sideDistX < sideDistY

'\ sideDistX >= sideDistY

|
Articulator Ready worldMap[mapX][mapY] == 0
\ &

sideDistX >= sideDistYp
sideDistY += deltaDistY;
mapy += stepY:
side =1;

ValidOut

-

worldMap[mapX][mapY] > 0

Fig. 5. DDA FSM

B. Parallel Processing with Finite State Machines (FSMs)

o Parallel DDA Finite State Machines (FSMs): The DDA
algorithm has variable latency depending on the ray’s
path. To manage this, two FSMs operate concurrently,
independently calculating grid intersections for assigned
rays. Each FSM:

— Steps along the ray, checking for wall intersections
by indexing the grid map.

— Calculates the intersection parameters such as wall
type, hit location, and distance.

Parallel operation ensures efficient utilization of resources
and higher throughput. The outputs of the FSMs are
multiplexed, routing valid data from the active FSM to
the output bus.

o Perpendicular Wall Distance and Line Height: In the
wall_calc state of the DDA FSM, the height of the
wall slice to render (1ineHeight) is calculated as:

. . H

lineHeight = perpWallDist “)
This division is implemented using an unsigned 8.8 fixed-
point division module.

e Ray Counter and Synchronization: A ray counter tracks
the number of rays processed in a frame. It generates
a signal (tLast_out) to indicate the last ray in the
frame, ensuring synchronization with the pixel rendering
pipeline and marking frame boundaries.

V. FRAME PROCESSING

To process and raster each frame, the vertical line output
data of the DDA algorithm needs to be transformed into
singular pixel data to be stored in some form of a frame buffer,
which can then be displayed onto the screen at a specific frame
rate.

A. Data Transformation

For each horizontal position on the screen, the DDA algo-
rithm described above effectively determines this correspond-
ing set of vertical line data: 1ineheight, X/Y wall,
mapData, wallX.

e lineheight height enables us to specify which pixels
within the vertical line represent the wall and which
represent the background.

e X/Y wall tells us which face of the wall we have hit
(which is used for the differential shading of different
faces of a cube).

e mapData gives us a 4 bit representation of the color or
texture of the specific block we’ve hit.

e WallX is the exact position of the wall we have hit which
is used to index into the appropriate vertical stripe of the
texture BRAM

The transformation essentially flattens this vertical line data
into pixel-level information by providing a specified pixel
color at a specified pixel address: (hcount, vcount) for each
pixel in the frame.

FIFO DATA WAIT

dda_fifo_valid_in
handshake with dda fifo data
R (vertical line data)

vcount_ray == HEIGHT
last calculated pixel
(vertical line data)
AN

_—

/
dda_fifo_tlast_in && vcount_ray == HEIGHT
last rendered pixel of a frame

/
dda_fifo_valid_in && frame_buffer_ready
¢ 3-way handshake with fifo + frame buffer
(new packet of data)

FIFO DATA WAIT
NEW PACKET

Fig. 6. Transformation FSM

Depending on the region of the screen in which the cur-
rently calculated pixel is from: CEILING, FLOOR, PLAIN-
WALL,TEXWALL, TOPDOWN, the method of determining
the pixel value is different.

o If the (hcount, vcount) address of the pixel is within the
CEILING or GROUND region, a ”’sky” color and "floor”
color corresponding to the current game world is used.

« If the pixel is within a SOLID wall, the pixel color is sim-
ply combinationally determined based on the mapData.

o If the region is TEXWALL, a request is sent to the tex-
tures module which handshakes the corresponding pixel
color by addressing into a texture BRAM that stores a
contiguous set of texture data. This address is determined
by mapping the (x,y) location of the pixel within the
texture block on the screen into an (X,y) location within
a texture block.

« Finally if the pixel lies within TOPDOWN which corre-
sponds to the top right portion of the screen displaying
where the player is given a top-down view of the maze, a
request is sent to a BRAM storing the map data through
the grid map module to determine the pixel color.

The three states within the transformation module: Since
the vertical line data used for this transformation calculation
is taken from the DDA-out FIFO, there needs to be ready-
valid handshakes between the FIFO and the transformation
module so ensure data is robustly dequeued. Therefore, there
are three states within the transformation module described
below and in Figure 5: the FIFO Wait, FIFO Wait New Packet,
and Flattening.

o FIFO Wait: the transformation module signals to the
FIFO that it’s ready for new data. Once new valid data
is received from the FIFO, the data is stored in a register

and the module transitions to the flattening state.

o FIFO Wait New Packet: After rendering the last pixel of a
frame, the transformation module waits for an additional
signal from the frame buffer to confirm that the frame
buffer is done rasterizing to the screen and is ready to
receive new frame data.

o Flattening: The module iterates through each vertical
index (vcount) of the vertical line data at hcount and
determines the pixel color based on the pixel’s region
at a latency also dependent on the pixel’s region. Once
this pixel data is received, it outputs the pixel address
and color to store within the downstream frame buffer.
Once all pixel values for a vertical line are calculated,
the module transitions to either FIFO Wait or FIFO Wait
New Packet, depending on whether the next vertical line
data needed is from the same frame or a new frame.

Additionally, the tlast bit that accompanies each data set

from the DDA-out FIFO enables the transformation module
to signal to the downstream frame buffer when the last pixel
of the current frame is being processed.

Tranformation J

ready_to_switch ‘

T T
write pixel last ‘

ixel
address value P

FSM

state—»| FB Write Mux
A A
Frame Frame
Buffer 1 Buffer 2
| hcount_| Address read J—»
Video veount—p-| Calculation address T T ‘ I
Sig |—hor_sync—» Busy sixel Busy pixel
Gen [—Ver_sync— value value
—active_drawp- ‘
—new_frame—p + *

—*| HDMI Write Mux

T
pixel value[15:0]

rgb value [23:0]
\/

Fig. 7. Frame Buffer

B. Frame Buffer

There are two frame buffers which store the pixel data for
each pixel location on the HDMI connected display. At any
given moment, one of the frame buffers is being written to
with the output of the preceding raycasting logic, while the
other fully calculated frame_buffer is being read from by
the video_signal generation module to be displayed on
the screen. This effectively pipelines the output to the display
so that while one of them is still computing a frame, the other
is outputting an already completed frame.

An FSM with two states is used to ensure the proper
transition between frame buffers.

o State one: frame buffer 1 is being written to, while frame
buffer 2 is being read from

o State two: frame buffer 2 is being written to, while frame
buffer 1 is being read from

The module transitions to the opposite state when two condi-
tions are met:

e The video signal generation module sends the
video_last_pixel_in signal, indicating it’s
done outputting the reading frame to the screen

e The transformation module sends the

ray_last_pixel_out signal, indicating it’s done
filling the writing frame with the fresh pixel values of
the currently calculated frame.

VI. GAME LogGIC

To demonstrate our working raycasting engine, we gamified
our system. The game allows for maze selection with different
textures and goal locations. The player has 60 seconds to find
these goal locations. The 60 second timer is displayed on the
seven segment display on the FPGA. If the player has reached
all goal locations in the alloted time, they have completed the
level.

|

Fig. 8. Screen Output

VII. EVALUATION

Our system can be assessed based on rendering speed,
smoothness, and resolution.

There is no limitation on rendering speed from the ray
casting logic of the system, as the limiting factor for the raster-
ization is purely the 60 frames per second HDMI video signal

generation. In other words, the frame is swiftly calculated in
time to be rendered onto the screen at 60 frames per second.

The slack for our system is positive 2.8 ns. To combat earlier
issues with negative slack, complex logic with multiplies and
additions with fixed point values were broken down into
simpler stages through pipelining and increased FSM stages.

Resolution was our main limiting factor due to the BRAM
limitations on the Xilinx FPGA. This project used 2271 LUTs,
21 DSP blocks, and totaled out the BRAM storage of 2.7Mbits
on the Xilinx Urbana FPGA. This is due to the usage of
BRAMs for four different locations on the FPGA: Frame
Buffers, FIFOs, Texture storage, and Grid Map storage. To
combat the BRAM storage limitations, trade-offs were made
with the color depth and precise definition of the pixels on
the screen. First, the rendered virtual screen is one-fourth the
dimensions of the actual 1280x720 screen, which decreases
screen resolution by 4-fold. The internal pixel representation
was also compressed to 8-bits, constraining the color range to
256 colors. The 22 textures were constrained to 64x64 blocks
and stored contiguously in a BRAM accessed using addressing
offsets to reduce unnecessary instantiations of BRAM. The
map data was also stored contiguously in a BRAM with
addressing offsets to access different maps.

Further optimizations to the resolution and BRAM usage
could be performed in the future by migrating to DRAM
usage, also allowing for the storage of more grid maps and
textures.

During the course of this project, the main source of issues
we ran into resulted from handshaking issues. However, these
handshaking issues were directly present as artifacts on the
screen, which aided in the debugging process.

In conclusion, we fulfilled our minimum viable product
of being able to render a grid into an interactive pseudo-3D
perspective with shading, and a majority of our stretch goals
which included creating a game fsm, adding many textures on
the walls, adding multiple maps, and a top down view in the
corner of the screen.

VIII. SOURCE CODE

All of our code for the Mazecaster is located inside of this
repository: https://github.com/thagenlo/mazecaster_fpga.git.

IX. ACKNOWLEDGMENTS

We would like to acknowledge our project mentor Kailas
Kahler and our instructor Joe Steinmeyer for their extensive
guidance and invaluable support throughout this project. We
would like to sincerely thank both of you and the rest of the
6.205 Fall 2024 course staff for making this project possible.

REFERENCES

[1] L. Vandevenne, Computer Graphics Tutorial: Raycasting. [Online].
Available: https://lodev.org/cgtutor/raycasting.html. [Accessed: Nov. 27,
2024].

[2] Pikuma, Raycasting Engine Tutorial: Algorithm & JavaScript. [On-
line]. Available: https://pikuma.com/courses/raycasting-engine-tutorial-
algorithm-javascript. [Accessed: Nov. 27, 2024].

[3] Green, Will, Project F, Division in Verilog. [Online]. Available:
https://projectf.io/posts/division-in-verilog/. [Accessed: Nov. 27, 2024].

camera position &

—clk_pixel . .
P direction

posX, posY [31:0]

(16-bit unsigned 8.8 fixed point each)

dirX, dirY [31:0]

16-bit signed 8.8 fixed point each, .
¢ g P) ray_calculations

planeX, planeY [31:0]
(16-bit signed 8.8 fixed point each)

A
moveDir [3:0]
(4-bit uint)

1

controller

_clk,pixel*D

clk_pixel

| sideDistX,

deltaDistX,
deltaDistY [31:0]
(16-bit unsigned

hcount_ray [8:0] rayDirX, 8.8 fixed point)
(9-bit uing) rayDirY [31:0]
(16-bit signed
8.8 fixed point)

A4

stepX, stepY [1:0]
(1-bit uint)

posY[31:0]
(16-bit unsigned
8.8 fixed point)

sideDistY [31:0]
(16-bit unsigned
posx, 8.8 fixed point)

DDA-in FIFO

——clk_pixel-

!
[138:0] dda_fsm_in_tdata

Aclk,pier»D
GRID BRAM

map[]ly] i

mapY
|

request

—
request
AN

\

DDA Step FSM 1

DDA Step FSM 2

validOut
A

validOout
Y

l

arbiter

T

[8:0] hcount_ray_out
(9-bit uint)

[7:0] lineHeight

T
wallType_out
(1-bit uint)

t_out

[15:0] wallX_out
(8.8 unsigned
fixed point)

tvalid

(8-bit uint)

[3:0] mapData_out

video_sig_gen

(4-bit uint)

T
[37:0] dda_fsm_out_tdata

tlast

tready

DDA-out FIFO

| clk_pixel

-
N
[~—~request

GRID BRAM [37:0] fifo,‘tdata,out
v

[tval

id 4
tlast Pready
Y I

valid™~—

N,
[3:0] map_data]
transformation

t.

textures

lid.
[H7:0] tex_pixel»|

<tk _pixe—

T T
[7:0] ray_pixel_out

[15:0] ray_address_out | ray_last_|
shade_out

i

pixel_out

tready

|——last_screen_pixel——p|

\—active_draw——p|

fram

A

Fig. 9. System Block Diagram

[10-:0] hcounL\{ideO—» frame_buffer | «clk_pixel—
[9:0] vcount_video——p|
[7:0] pixel_out
- v
Palette 4<~clk7pixel—
|
[23:0] rgb_out
hor_sync——p|
ver-syne ™ tmds + OFBUDS HDMI Signal

